Edit on GitHub

Prepare Your Repositories

DVC Studio creates views by identifying datasets, metrics and hyperparameters defined in your Git repositories. These values are stored in your Git repositories as JSON or YAML files. You can add these values to your Git repositories in two ways:

  1. Set up DVC repositories: You can use DVC and Git to version your code, data and models all within your Git repositories. Data Version Control, or DVC, is a data and ML experiment management tool that takes advantage of the existing engineering toolset that you're already familiar with (Git, CI/CD, etc.). By using DVC, you can be sure not to bloat your repositories with large volumes of data or huge models. These large assets reside in the cloud or other remote storage locations. You will simply track their version info in Git.

    DVC also enables you to share your data and model files, create data registries, create data pipelines, connect them with CML for CI/CD in machine learning, and so on. Find more about the features and benefits of DVC here.

    Refer to the DVC documentation to initialize a DVC repository.

  2. Specify custom files with your metrics and parameters: If you are working with a non-DVC repository, you can still create views for it provided that the metrics and hyperparameters are stored in JSON or YAML files. For instance, if you have an ML project for which you generate and save metrics either manually or using some ML tracking tools, then you can create a view for this project by specifying the file (within your Git repo) which contains your saved metrics. Refer to the section on view settings to learn how to specify the custom files.

๐Ÿ› Found an issue? Let us know! Or fix it:

Edit on GitHub

โ“ Have a question? Join our chat, we will help you:

Discord Chat