Edit on GitHub

Live.log_plot()

def log_plot(
    name: str,
    datapoints: List[Dict],
    x: str,
    y: str,
    template: Optional[str] = None,
    title: Optional[str] = None,
    x_label: Optional[str] = None,
    y_label: Optional[str] = None,
):

Usage

from dvclive import Live

datapoints = [
    {"name": "petal_width", "importance": 0.4},
    {"name": "petal_length", "importance": 0.33},
    {"name": "sepal_width", "importance": 0.24},
    {"name": "sepal_length", "importance": 0.03}
]

with Live() as live:
    live.log_plot(
        "iris_feature_importance",
        datapoints,
        x="importance",
        y="name",
        template="bar_horizontal",
        title="Iris Dataset: Feature Importance",
        y_label="Feature Name",
        x_label="Feature Importance"
    )

Description

The method will dump the provided datapoints to {Live.dir}/plots/custom/{name}.json and store the provided properties to be included in the plots section written by Live.make_dvcyaml().

The example snippet would produce the following dvc.yaml:

plots:
  - dvclive/plots/custom/iris_feature_importance.json:
      template: bar_horizontal
      x: importance
      y: name
      title: 'Iris Dataset: Feature Importance'
      x_label: Feature Importance
      y_label: Feature Name

Which can be rendered by dvc plots:

dvc plots show

Parameters

  • name - Name of the output file.

  • datapoints - List of dictionaries containing the data for the plot.

  • x - Name of the key (present in the dictionaries) to use as the x axis.

  • y - Name of the key (present in the dictionaries) to use the y axis.

  • template - Name of the DVC plots template to use. Defaults to linear.

  • title - Title to be displayed. Defaults to {Live.dir}/plots/custom/{name}.json.

  • x_label - Label for the x axis. Defaults to the name passed as x.

  • y_label - Label for the y axis. Defaults to the name passed as y.

Example: Plot from Pandas DataFrame

You can get the datapoints in the expected format from a Pandas DataFrame:

import pandas as pd
from dvclive import Live
from sklearn.datasets import load_iris

iris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)

datapoints = df.to_dict("records")

with Live() as live:
    live.log_plot(
        "sepal",
        datapoints,
        x="sepal length (cm)",
        y="sepal width (cm)",
        template="scatter",
        title="Sepal width vs Sepal length")

dvc plots show

Content

๐Ÿ› Found an issue? Let us know! Or fix it:

Edit on GitHub

โ“ Have a question? Join our chat, we will help you:

Discord Chat