Skip to content
Edit on GitHub

Fast.ai

DVCLive allows you to add experiment tracking capabilities to your Fast.ai projects.

Usage

To start using DVCLive, add a few lines to your training code in any Fast.ai project.

Include the DvcLiveCallback int the callbacks list passed to your Learner:

+from dvclive.fastai import DvcLiveCallback

. . .

learn = tabular_learner(data_loader, metrics=accuracy)
learn.fit_one_cycle(
-  n_epoch=2)
+  n_epoch=2,
+  cbs=[DvcLiveCallback()])

This will generate the outputs as described in the Get Started.

Without requiring additional modifications to your training code, you can use DVCLive alongside DVC. See DVCLive with DVC for more info.

Parameters

  • model_file - (None by default) - The name of the file where the model will be saved at the end of each step.

  • **kwargs - Any additional arguments will be passed to Live.

Examples

  • Using model_file.
from dvclive.fastai import DvcLiveCallback

learn = tabular_learner(data_loader, metrics=accuracy)
learn.fit_one_cycle(
  n_epoch=2,
  cbs=[DvcLiveCallback(model_file="model.pth")])
  • Using **kwargs to customize Live.
from dvclive.fastai import DvcLiveCallback

learn = tabular_learner(data_loader, metrics=accuracy)
learn.fit_one_cycle(
  n_epoch=2,
  cbs=[DvcLiveCallback(model_file="model.pth", path="custom_path")])
Content

🐛 Found an issue? Let us know! Or fix it:

Edit on GitHub

Have a question? Join our chat, we will help you:

Discord Chat