Edit on GitHub
Keras
DVCLive allows you to add experiment tracking capabilities to your Keras projects.
Usage
Include the
DVCLiveCallback
in the callbacks list passed to your
Model:
from dvclive.keras import DVCLiveCallback
...
model.fit(
train_dataset, epochs=num_epochs, validation_data=validation_dataset,
callbacks=[DVCLiveCallback()])Each metric will be logged to:
{Live.plots_dir}/metrics/{split}/{metric}.tsvWhere:
{Live.plots_dir}is defined inLive.{split}can be eithertrainoreval.{metric}is the name provided by the framework.
Parameters
-
live- (Noneby default) - OptionalLiveinstance. IfNone, a new instance will be created using**kwargs. -
**kwargs- Any additional arguments will be used to instantiate a newLiveinstance. Ifliveis used, the arguments are ignored.
Examples
- Using
liveto pass an existingLiveinstance.
from dvclive import Live
from dvclive.keras import DVCLiveCallback
with Live("custom_dir") as live:
model.fit(
train_dataset,
epochs=num_epochs,
validation_data=validation_dataset,
callbacks=[DVCLiveCallback(live=live)])
model.load_weights(os.path.join("model", "best_model"))
# Log additional data after training
test_loss, test_acc = model.evaluate(test_dataset)
live.log_metric("test_loss", test_loss, plot=False)
live.log_metric("test_acc", test_acc, plot=False)- Using
**kwargsto customize the newLiveinstance.
model.fit(
train_dataset,
epochs=num_epochs,
validation_data=validation_dataset,
callbacks=[DVCLiveCallback(dir="custom_dir")])